viernes, 24 de septiembre de 2010

Práctica 3 - Digestión de la albúmina por “pepsina” industrial

Digestión de la albúmina por “pepsina” industrial
Preguntas generadoras:
1.    ¿Cómo actúa la pepsina sobre las proteínas?
2.    ¿Cómo están formadas las proteínas?
3.    ¿Qué es la pepsina?
4.    ¿Cuál es el papel que desempeñan las proteínas del alimento, en los animales?
5.    ¿Por qué es necesario que se digieran las proteínas del alimento?
6.    ¿Qué es la hidrólisis de una proteína?
7.    ¿Qué papel desempeña el ácido clorhídrico al actuar sobre la pepsina?
Planteamiento de las hipótesis:

Introducción
El jugo gástrico, elaborado por las glándulas de la mucosa del estómago, contiene ácido clorhídrico libre y dos enzimas: quimosina y pepsina. En realidad ambas son secretadas como proenzimas inactivas, y en presencia del ácido clorhídrico se transforman espontáneamente en enzimas activas.
Durante la digestión de las proteínas (polímeros de aminoácidos) se hidrolizan los enlaces peptídicos de estas moléculas. Este proceso se inicia en el estómago por acción de las pepsinas que rompen las uniones (enlaces peptídicos) a  nivel de los aminoácidos fenilalanina y tirosina, de manera que los productos de la digestión gástrica de las proteínas son polipéptidos de muy diversos tamaños. La mayor parte de la digestión de proteínas se produce en el intestino delgado, donde los productos de la digestión gástrica son hidrolizados hasta aminoácidos, primero por la acción de las enzimas proteolíticas del jugo pancreático y después por las enzimas asociadas a las células de las microvellosidades.
Una reacción característica de los polipéptidos es la reacción de Biuret, las proteínas y los aminoácidos no dan positiva esta reacción 
Objetivos:
·          Identificar la acción de la pepsina sobre las proteínas
·          Identificar los productos de la acción de la pepsina sobre las proteínas
·          Comprender la acción de los jugos gástricos en la digestión química del alimento
·          Conocer cómo se puede activar una enzima
Material:
1 vaso de precipitados de 1000 ml
Papel filtro
1 embudo
1 probeta de 100 ml
1 gradilla
4 tubos de ensayo
4 probetas de 10 ml
Gasas
Material biológico:
Claras de huevo
Sustancias:
Ácido clorhídrico 0.1 N
Reactivo de Biuret
Pepsina
Equipo:
1 balanza granataria electrónica
1 parrilla con agitador magnético

Procedimiento:
Bate la clara de huevo cruda en un litro de agua fría, y llévala hasta la ebullición, sin dejar de batir. Fíltrala. El líquido que se obtiene es una fina suspensión, muy estable, de albúmina desnaturalizada.
Prepara, por otro lado, jugo gástrico artificial, diluyendo en 100 ml de agua, 1 g de jugo gástrico desecado, que se vende en las farmacias bajo la denominación de “pepsina”, nombre que proviene de la enzima principal que contiene.
Prepara en cuatro tubos de ensayo, las siguientes mezclas:
1.    6 ml de albúmina + 6 ml de agua.
2.    6 ml de albúmina + 1,5 ml de agua + 4,5 ml de HCl, 0.1 N.
3.    6 ml de albúmina + 1,5 ml de pepsina + 4,5 ml de agua
4.    6 ml de albúmina + 1,5 ml de pepsina + 4,5 ml de HC1,  0.1 N.
A continuación coloca los tubos a baño María, a 40° C. Algunos minutos más tarde, únicamente en el tubo 4 se producirá un aclarado, esto es consecuencia de la actividad de la pepsina que, en medio ácido, ha hidrolizado a la albúmina.
Resultados:
Contenido del tubo
Reacción Biuret
Albúmina + agua

Albúmina + agua +ácido clorhídrico

Albúmina + pepsina + agua

Albúmina + pepsina +ácido clorhídrico


Análisis de resultados:
Elabora la caracterización de los siguientes conceptos: proteína, hidrólisis, enlace peptídico, polipéptido, aminoácido, digestión química, enzima activa, enzima inactiva.

Replanteamiento de las predicciones de los alumnos:


Conceptos claves: Digestión de proteínas, pepsina, sitio de producción de pepsina en el aparato digestivo humano, sitio de hidrólisis total de las proteínas en el aparato digestivo humano.
Relaciones.
Esta actividad de laboratorio coadyuva a la construcción del concepto de digestión química, en este caso, asociada con la degradación de las proteínas. Es importante relacionar los órganos donde se inicia y termina esta hidrólisis.

viernes, 17 de septiembre de 2010

Lectura 1 - El aparato digestivo de los animales.





Mapa Conceptual.


Glosario.

Enzima: Las enzimas son biocatalizadores de naturaleza proteica. Todas las reacciones químicas del metabolismo celular se realizan gracias a la acción de catalizadores o enzimas. 


Pseudópodos: extensiones de la membrana plasmática y del citoplasma con las que algunas células rodean bacterias u otras sustancias extrañas en el proceso de fagocitosis
Citostomas: En las células con membrana resistente, abertura a modo de boca por donde entran las partículas alimenticias.
Ventosa: Órgano que tienen ciertos animales en los pies, la boca u otras partes del cuerpo, para adherirse o agarrarse mediante el vacío al andar o hacer presa
Faringe: Conducto musculoso situado entre la boca, la parte posterior de las fosas nasales y el esófago
Esófago: Conducto del sistema digestivo que va desde la faringe hasta el estómago y por el que pasan los alimentos
Celulosa: Hidrato de carbono que es el componente básico de la membrana de las células vegetales. Se utiliza en la fabricación de papel, fibras textiles, plásticos, etc.
Microorganismo simbionte: [Individuo] asociado en simbiosis con otro [individuo].

Bibliografía. 

domingo, 12 de septiembre de 2010

Práctica 2 - W de Gowin.

Practica 2 - Acción de la amilasa sobre el almidón.

Preguntas generadoras:
  1. ¿Cómo actúa la amilasa sobre el almidón?
  2. ¿Cómo está formado el almidón químicamente?
  3. ¿Qué es la amilasa desde el punto de vista químico?
  4. ¿Cuál es papel que desempeña el almidón en los animales?
  5. ¿Por qué es necesario para los animales que la amilasa actúe sobre el almidón?
Planteamiento de las hipótesis:

Introducción
El almidón es el polisacárido de reserva más abundante en los vegetales y es una fuente importante de azúcares para los animales dentro de los que se encuentra el hombre. La estructura química del almidón permite que al penetrar el yodo en ésta se forme una disolución de color azul violácea intensa característica que permite la identificación positiva del almidón en una disolución. El almidón puede romperse o hidrolizarse por medios químicos o enzimáticos.
La ebullición con ácidos o bases hidroliza los enlaces entre las unidades de glucosa hasta la obtención de las unidades de glucosa individuales. El almidón puede hidrolizarse enzimáticamente por medio de la  amilasa que se encuentra formando parte de la saliva y el jugo pancreático. La amilasa rompe  los enlaces entre los azucares que constituyen al almidón y finalmente después de su acción deja glucosa libre y maltosa
Objetivos:
·          Identificar la acción de la amilasa de la saliva sobre el almidón
·          Identificar los productos de la acción de la amilasa sobre el almidón
·          Caracterizar la digestión enzimática realizada por la secreción de las glándulas salivales.
Material:
Papel filtro
Embudo
5 tubos de ensayo
2 goteros
2 cápsulas de porcelana
Material biológico:
Muestra de saliva
Sustancias:
Agua destilada
Almidón
Reactivo de Benedict
Reactivo de Lugol para almidón
Equipo:
Balanza granataria electrónica
Parrilla con agitador magnético
Procedimiento:
A. Obtención de la enzima amilasa
Después de enjuagar la boca, mastica un trozo de papel filtro  para estimular la salivación. Los líquidos segregados se van pasando a un embudo que tenga un papel filtro, el filtrado se coloca en un tubo de ensayo hasta obtener 1  ml.
La saliva así obtenida se diluye empleando 1ml de saliva y 10 ml de agua destilada, así se obtiene la preparación de enzima base.
Se prepara una solución al 2% de almidón, para lo cual se pesan 2 g de almidón y se disuelven en 100 ml de agua destilada
Se colocan 2 ml de agua destilada en un tubo de ensayo se le agregan 2 ml de la solución de almidón al 2% y 2 ml de la solución base de la enzima. En otro tubo se colocan 2 ml de agua destilada y se le agregan 2 ml de la solución de almidón al 2%.
 Los tubos se colocan en baño maría a 37° C, durante 15 minutos dejando que la amilasa vaya hidrolizando al almidón
Una vez transcurridos los 15 minutos se sacarán los tubos del baño maría y se harán las pruebas del lugol y Benedict
B. Reacciones de lugol para almidón y Benedict
La prueba del yodo o el lugol permite identificar la presencia de almidón, con este reactivo se obtiene un color azul-violeta característico. Toma 1 ml de la disolución de cada uno de los tubos y añade unas gotas de lugol a cada una de ellas. Si no existe la hidrólisis del almidón la prueba será positiva.
La prueba de Benedict permite identificar a los azucares reductores. Toma 1 ml de cada uno de las disoluciones de los tubos y agrégales 1 ml del reactivo de Benedict, enseguida coloca ambos tubos en baño María, si existe hidrólisis del almidón se formará un precipitado rojo ladrillo que indica la presencia de azúcares como la glucosa y la maltosa
Resultados:
Contenido del  Tubo
Reacción de Lugol
Reacción de Benedict
Amilasa+ almidón +agua


Almidón+agua


Análisis de resultados:
Elabora la caracterización de los siguientes conceptos: enzima, digestión química, digestión mecánica, degradación, saliva, azúcares simples, azúcares complejos, polímeros y monómeros.
Replanteamiento de las predicciones de los alumnos:


Conceptos clave: Enzima, digestión, digestión química, degradación, secreciones de glándulas del aparato digestivo, reacciones químicas en el interior del cuerpo, azúcares simples, azúcares complejos, polímeros y monómeros.
Relaciones. Este tema es importante porque permite observar en el laboratorio la acción de las secreciones de las glándulas salivales, las que llevan a cabo una digestión química de los polisacáridos, apoya a los estudiantes en la construcción del concepto de digestión química y permite comprender la función de algunas glándulas asociadas al aparato digestivo.