martes, 30 de noviembre de 2010

Lectura 3 - La importancia de la fotosíntesis.

Mapa Conceptual.


Glosario. 
Almidón.- fécula, especialmente la de las semillas de los cereales, que tiene usos alimenticios, terapéuticos e industriales, en especial para el apresto de la ropa blanca.
Anaerobio.- Se aplica a la respiración en la que los principios inmediatos se oxidan parcialmente, liberando energía, en un proceso que no utiliza oxígeno sino otra sustancia oxidante como sulfato o nitrato.
Organismo que realiza respiración anaerobia y, por tanto, puede vivir sin oxígeno.
Aerobio.- Se aplica a la respiración en la que los principios inmediatos se oxidan completamente hasta dióxido de carbono y agua, liberando energía, en un proceso que requiere oxígeno molecular.

Bibliografía.


Práctica 3 - W de Gowin

Práctica 3 - Producción de oxígeno e identificación de glucosa en Elodea expuesta a la luz y a la oscuridad

Preguntas generadoras:

  1. ¿Qué organismos producen el oxígeno en el planeta?
  2. ¿Qué necesitan para producir oxígeno?
  3. ¿Qué papel desempeña la luz en el proceso fotosintético?

Planteamiento de las hipótesis:


Introducción
Las plantas verdes liberan oxígeno molecular (O2) como producto de la fotosíntesis y representa el 20% de la atmósfera terrestre. Este oxígeno satisface los requerimientos de todos los organismos terrestres que lo respiran, además cuando se disuelve en agua, cubre las necesidades de los organismos acuáticos.


La luz es uno de los recursos esenciales para las plantas; es una forma de energía procedente del sol y no una sustancia. La luz se transforma por procesos biofísicos en energía química durante la fotosíntesis.
La luz que se usa en la fotosíntesis corresponde a las longitudes de onda que van de los 380 a 760 nanómetros, es decir una fracción pequeña de todo el espectro de energía radiante que el sol emite. La energía contenida en la luz permite que los cloroplastos puedan modificar la estructura química del dióxido de carbono y el agua, para transformarlos en compuestos orgánicos.
Objetivos:
·   Conocer el efecto que produce la luz sobre las plantas de Elodea en condiciones de luminosidad y oscuridad.
·   Comprobar que las plantas producen oxígeno.

Material:

1 palangana
1 pliego de papel aluminio
1 vaso de precipitados de 250 ml
2 vasos de precipitados de 600 ml
1 caja de Petri ó vidrio de reloj
2 embudos de vidrio de tallo corto
2 tubos de ensayo
1 probeta de 10 ml
1 gotero
1 espátula
1 varilla de ignición (o pajilla de escoba de mijo)
Cerillos o encendedor
Material biológico:
2 ramas de Elodea

Sustancias:

Fehling A
Fehling B
Glucosa
Agua destilada
Equipo:
Balanza granataria electrónica
Parrilla con agitador magnético
Microscopio óptico
Procedimiento:
A. Montaje de los dispositivos.
Enjuaga con agua de la llave la planta de Elodea que se utilizará en la práctica. Selecciona dos ramas jóvenes. Verifica en la balanza granataria electrónica que las ramas pesen exactamente lo mismo.
Llena la palangana con agua de la llave. Lo siguiente deberá hacerse dentro de la palangana, por debajo del agua.
  1. Introduce un vaso de precipitados de 600 ml
  2. Coloca una rama de Elodea dentro de un embudo de vidrio de tallo corto e introduce el embudo en forma invertida al vaso de precipitados de 600 ml, cuidando que la planta se mantenga dentro del embudo.
  3. Posteriormente introduce un tubo de ensayo y colócalo en forma invertida en el tallo del embudo, verificando que no contenga burbujas.
  4. Saca el montaje y colócalo sobre la mesa. 
Repite la misma operación con la otra rama de Elodea.
Una vez que ya se tienen los dos montajes, colócalos a temperatura ambiente. Uno de ellos se dejará en condiciones de luminosidad natural y el otro se cubrirá con papel aluminio. Deja transcurrir 48 horas.
B. Después de transcurridas las 48 horas.
Antes de iniciar la actividad observa ¿Qué se formó en los tubos de ensaye de los montajes que dejaste en luz y en oscuridad?
Enseguida toma el montaje que se dejó en condiciones de luminosidad natural y agrega más agua al dispositivo, de tal manera que al sumergir la mano al vaso de precipitados, puedas tapar con el dedo pulgar ó índice la boca del tubo de ensayo que se encuentra invertido en el vaso de precipitados, con el propósito de impedir la salida del gas contenido en el interior del tubo.
Enciende una varilla de ignición (utiliza una pajilla de escoba de mijo), y espera hasta que aparezca una pequeña brasa, apaga la flama de la pajilla e introdúcela al interior del tubo que contiene el gas, observa qué le sucede a la brasa de la pajilla.

Repite los pasos 2 y 3 con el montaje que se dejó envuelto con el papel aluminio.
C. Preparación de las soluciones para realizar la prueba control y la prueba de identificación de glucosa
Pesa 1 gr de glucosa, colócala en un vaso de precipitados de 250 ml y agrega 100 ml de agua destilada para preparar una disolución de glucosa al 1%. Rotula el vaso de precipitados con la leyenda: Glucosa al 1%.
Toma todas las hojas de la planta de Elodea del montaje que se dejó en condiciones de luz, y tritúralas en un mortero hasta obtener un homogenizado.
Procede a realizar la prueba control y la prueba de identificación de glucosa y anota tus observaciones.
Prueba control:
Mezcla 2 ml de Fehling A y 2 ml de Fehling B en un tubo de ensayo, agrega 10 ml de la solución de glucosa al 1%. Agita suavemente. Calienta en baño maria hasta la ebullición y observa lo que sucede.
Prueba de identificación de glucosa:
Mezcla 2 ml de Fehling A y 2 ml de Fehling B en un tubo de ensayo, coloca el macerado de las hojas de Elodea. Ponlos a calentar en baño maria hasta la ebullición. Realiza una preparación temporal de Elodea y observa al microscopio con el objetivo de 10x.
Repite la parte C desde el paso 2, con el montaje que se dejó en condiciones de oscuridad.
Resultados:
Parte B. Anota tus observaciones de lo que se formó en el tubo de ensayo que dejaste en luz y en el tubo de ensayo que dejaste envuelto en papel aluminio.
¿Qué sucedió con la pajilla al acercarla a los dos tubos de ensayo? ¿Por qué crees que ocurrió esto?
Parte C. Si en la prueba de identificación de glucosa, se observa el cambio de coloración de azul a naranja, indica positivo para la presencia de glucosa.
Si al examinar la preparación en el objetivo de 10x se observan zonas teñidas de color naranja, indican positivo para la presencia de glucosa.
Análisis de los resultados:
¿Cómo se llama lo que se produjo dentro de los tubos de ensayo?
En tus propias palabras explica ¿Qué factores intervinieron en la producción de lo que apareció dentro de los tubos de ensayo? ¿Por qué?
¿Cuál es la importancia de la luz para la producción de oxígeno?
Replanteamiento de las predicciones de los alumnos:


Conceptos clave: Monosacáridos, glucosa, reacción, reactivo de Fehling, oxígeno.
Relaciones. Este tema es importante porque permite observar en el laboratorio la producción de oxígeno y de glucosa por las plantas expuestas a la luz y por lo tanto sirve para ubicar a los alumnos en la explicación de la importancia de la luz en la fotosíntesis.


Lectura 2 - Ósmosis: Un caso de difusión.

Mapa Conceptual.


Glosario.
Ósmosis.- Paso recíproco de líquidos de distinta densidad a través de una membrana que los separa.
Solvente.- es el componente de una disolución que se halla en mayor proporción, de modo que otro componente puede disolverse en él.
Soluto.- Componente de una disolución que se disuelve en otro. El soluto se considera siempre como el componente minoritario de la mezcla.
Hidrófilo.- sustancia orgánica que se disuelve en el agua por existir afinidad entre ésta y ciertos grupos de sus moléculas.
Hidrófobo.- que repele o no absorbe el agua.
Isotónico.- se aplica a las soluciones que, a la misma temperatura, tienen igual presión osmótica.
Hipotónico.-  que tiene una presión osmótica menor que la de otra solución a igual temperatura.
Hipertónico.- que tiene una presión osmótica mayor que la de la otra solución a igual temperatura.
Plasmólisis.- Retracción de la membrana citoplasmática respecto de la pared rígida suprayacente.
Turgencia.- Fenómeno por el cual las células al absorber agua, se hinchan y la pared celular ejerce presión contra la membrana, la cual se pone tensa. De esto depende que una planta este marchita o firme.

Bibliografía.


Practica 2 - W de Gowin.

Práctica 2 - El papel del suelo y del agua en la nutrición autótrofa.

Preguntas generadoras:
  1. ¿De qué se alimentan las plantas?
  2. ¿De qué manera participa el suelo en la nutrición autótrofa?
  3. ¿Cuál es la función del agua en la nutrición autótrofa?

Planteamiento de las hipótesis:


Introducción
El suelo contiene sales minerales, hongos, bacterias y una diversidad de formas de vida. Estos microorganismos se alimentan de materia orgánica en descomposición, que transforman en compuestos inorgánicos y que a su vez constituye la materia prima que utiliza la planta para realizar la fotosíntesis.
La materia inorgánica entra a la planta disuelta en agua. Por su naturaleza, el agua no sólo es la fuente de hidrógeno indispensable para la construcción de moléculas orgánicas, sino también es el solvente de la mayor parte de los solutos que se encuentran en las plantas y demás seres vivos y participa en las reacciones biológicas. En el caso particular de los vegetales, éstos incorporan agua para compensar las pérdidas por transpiración. Aunque el suelo y el agua son esenciales para llevar a cabo los procesos fisiológicos de los vegetales, no son el alimento de las plantas, sino solamente son la materia prima que estará involucrada en las transformaciones químicas de la fotosíntesis.
Objetivo:
·        Establecer el papel del agua y del suelo en la nutrición autótrofa.
Material:
1 vaso de precipitados de 1000 ml
1 probeta de 100 ml
1 espátula
1 vidrio de reloj
1 agitador
4 envases de plástico de 250 ml aproximadamente
Regla en milímetros
Tezontle
Material biológico:
Plántulas de frijol
Tierra

Sustancias:

Nitrato de calcio

Sulfato de magnesio
Fosfato de potasio monobásico
Agua destilada
Equipo:
Balanza granataria electrónica
Procedimiento:
A. Preparación de la solución hidropónica.
Pesa 1.2 gr de nitrato de calcio, agrega 5 gr de sulfato de magnesio y añade 3 gr de fosfato de potasio monobásico. Disuélvelos en agua destilada y afóralos a 1 litro.
B. Siembra de las plántulas.
Selecciona doce plántulas de frijol y mide la longitud inicial de cada una. Después enumera cuatro envases de plástico (de aproximadamente 200 o 250 ml) y siembra tres plántulas por envase, con los sustratos que a continuación se mencionan:
·   En el envase 1 agrega tierra hasta cubrir las raíces de las plántulas y añade 10 ml de agua de la llave.
·   En el envase 2 acomoda el tezontle hasta cubrir las raíces de las plántulas y añade 10 ml de agua destilada.
·   En el envase 3 coloca tezontle hasta cubrir las raíces de las plántulas y añade 10 ml de agua de la llave.
·   En el envase 4 vierte la solución hidropónica y acomoda las plántulas cuidando de que las raíces queden sumergidas.
NOTA: Es importante que cada clase riegues y midas las plántulas, durante el tiempo que te indique tu profesor.
Para regar las plántulas añade:
·   Agua de la llave a los envases 1 y 3
·   Agua destilada al envase 2
·   Solución hidropónica al envase 4.
NOTA: Recuerda que se debe agregar la misma cantidad de agua o de solución hidropónica en los 4 envases, según sea el caso.
Resultados: Completa la siguiente tabla:


Recipiente 1
Suelo
+
10 ml de agua de la llave
Recipiente 2
Tezontle
+
10 ml de agua destilada
Recipiente 3
Tezontle
+
10 ml de agua de la llave
Recipiente 4

Solución hidropónica
Medición inicial





Medición 1





Medición 2





Medición 3





Medición 4





Medición 5





Medición 6





Análisis de los resultados:
Compara tus resultados con los obtenidos por los demás equipos y elabora tus conclusiones.
Replanteamiento de las predicciones de los alumnos:


Conceptos clave: Plántula de frijol, nutrición autótrofa, crecimiento, hidroponia, suelo.
Relaciones. Este tema es clave porque le permite al alumno comprobar que las plantas crecen en diferentes sustratos y que el agua y el suelo no son en sí mismos, los alimentos de la planta.


domingo, 28 de noviembre de 2010

Lectura 1.- De la luz a la glucosa.

Mapa Conceptual.


Glosario.
Glucosa.- azúcar de color blanco, cristalizable, de sabor muy dulce, muy soluble en agua y poco en alcohol, que se halla disuelto en las células de muchos frutos maduros, especialmente la uva y en sangre y líquidos tisulares de animales.
Quimiosíntesis.- Proceso por el que la materia inorgánica se convierte en orgánica utilizando energía liberada en reacciones químicas.
Fotosíntesis.- Proceso metabólico de síntesis específico de ciertas células de los organismos autótrofos, por el que se sintetizan sustancias orgánicas a partir de otras inorgánicas, utilizando la energía luminosa.
Cloroplastos.- Orgánulo que contiene clorofila y es el lugar de la fotosíntesis.
Tilacoide.-  Saco membranoso o vesícula que forma parte de la estructura interna del cloroplasto, donde tienen lugar las reacciones captadoras de luz de la fotosíntesis y fosforilación.
Clorofila.- Pigmento propio de las plantas verdes y ciertas bacterias. Se trata de una magnesio-porfirina que participa en los mecanismos biológicos de la fotolisis del agua en el proceso de la fotosíntesis. Conjunto de sustancias de color verde que en diversa proporción existen en el talo de las algas y en los órganos de los vegetales superiores, en especial en las hojas.

Bibliografía.


sábado, 20 de noviembre de 2010

Práctica 1 - W de Gowin.






Práctica 1 - Estructuras que participan en la nutrición autótrofa (raíz, tallo y hoja)

Preguntas generadoras:

  1. ¿Dónde elaboran las plantas su alimento?
  2. ¿Cómo participa la raíz en la nutrición autótrofa?
  3. ¿Qué función desempeña el tallo en la nutrición autótrofa?
  4. ¿Qué función desempeña la hoja en la nutrición autótrofa?

Planteamiento de las hipótesis:


Introducción
En la fotosíntesis participan diferentes estructuras vegetales, como la raíz, el tallo y las hojas. Estructuralmente, las raíces y los tallos proporcionan soporte a la planta para mantenerse erguida y anclada al suelo. Las hojas poseen estomas que al abrirse permiten la entrada y salida de gases con la consecuente pérdida de agua a la atmósfera en forma de vapor.
Fisiológicamente, las raíces efectúan la absorción de agua y sales minerales del suelo, necesarios para la síntesis de moléculas orgánicas. Los minerales disueltos son conducidos hacia el tallo y las hojas a través de tejidos vasculares. En su estructura, los tejidos vasculares están formados por células alargadas que permiten la conducción de agua y minerales desde el suelo hacia las hojas (xilema) o de los materiales elaborados en las hojas hacia las raíces (floema). Este eficiente sistema se conoce como “sistema conductor vegetal”.
Las hojas tienen una disposición ordenada en el tallo, lo que les permite capturar de manera eficiente la luz del sol y absorber el dióxido de carbono atmosférico a través de los estomas, que constituyen una importante estructura de intercambio de gases para realizar la fotosíntesis.


Objetivos:
·   Conocer diferentes tipos de raíces.
·   Mostrar la presencia de sistemas conductores en las plantas.
Observar las células estomáticas en hojas vegetales.
MaterialMaterial:
Portaobjetos y cubreobjetos
Navaja o bisturí
Material biológico:
Zanahoria
Raíz de cebolla de cambray
Raíz de ajo. NOTA: Si el ajo no presenta raíces, puedes dejarlo sobre agua sin sumergirlo durante 2 o 3 días.
Tallo y hoja de apio
Raíz, tallo y hoja de betabel
Jugo de betabel
Espinaca
Hoja de lirio
Sustancias:
Agua destilada
Equipo:
Microscopio óptico
Procedimiento:
A. Raíz
Observa los diferentes tipos de raíces y dibújalos. Enseguida haz cortes transversales y procede a observarlos con ayuda del microscopio.

B. Tallo
Realiza un corte transversal del tallo de apio y de la zanahoria y obsérvalos al microscopio con el objetivo de 10x. Con ayuda de un libro trata de identificar las estructuras que observas.
Luego vierte el jugo de betabel en un matraz Erlenmeyer de 500 ml. Corta el extremo inferior del tallo del apio e introduce el apio en el matraz que contiene el jugo de betabel. Deja que el apio permanezca el mayor tiempo posible dentro del jugo de betabel. Una vez que ha transcurrido el tiempo señalado, retira el apio del matraz, quita el exceso de jugo y realiza un corte transversal del tallo que no estuvo sumergido. Obsérvalo al microscopio con el objetivo de 10x ¿Qué observas? ¿Notaste algún cambio en el apio después de haberlo dejado sumergido dentro del jugo de betabel?
Posteriormente realiza cortes transversales de las partes del tallo de betabel que estuvieron sumergidas y obsérvalas al microscopio con el objetivo de 10x. Con ayuda de un libro identifica las estructuras que se observan.
C. Hoja
Realiza preparaciones temporales de la epidermis de la hoja de lirio para observar las células estomáticas. Con ayuda de un libro identifica las células estomáticas y dibújalos.
Resultados:
Elabora dibujos de raíz, tallo y hoja, con los nombres de las estructuras que observaste.
Análisis de los resultados:
Busca en la bibliografía esquemas de raíz, sistema conductor y hoja, y compáralos con los dibujos que realizaste en la práctica ¿De qué está constituida cada estructura?
Replanteamiento de las predicciones de los alumnos:


Conceptos clave: Raíz, tallo (xilema y floema), hoja, células estomáticas o estomas.
Relaciones. Este tema es trascendente debido a que los alumnos primero deben tener una visión macroscópica de las estructuras que intervienen en la nutrición autótrofa para que tengan un referente que les permita relacionar esta información con el nivel microscópico.